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Abstract

Monsky’s theorem of 1970 says that we cannot dissect a unit square into 
an odd number of triangles of equal area. A related question, dissecting a rectangle 
into three triangles of equal area, illustrates the importance of the curvature of 
space. We prove that the dissection can be done in hyperbolic space, the non-
Euclidean geometry of negative curvature.
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Introduction

Any excuse to bring up Monsky’s theorem is worth the time because the 
theorem is one clear sentence with a famously clever proof. Monsky’s theorem 
says that we cannot tile a unit square with an odd number of triangles of equal 
area. The proof assumes a tiling of n triangles with equal area, assigns colors from 
a set of three colors to the vertices in a reasonable way and shows the existence 
of at least one triangle with all three colors. The knock-out punch happens when 
the three-color triangle cannot have area  while n is odd. [1] The Euclidean 
area formula of a triangle is a crucial part of the proof of Monsky’s theorem. As 
a preview to our main ideas, we will follow Monsky’s proof for three triangles.

Figure 1. Dissect a square.

Monsky’s famous proof applied to three triangles conveys only some of 
the cleverness. Since we want equal area, each triangle has to have area . We note 
right away that the actual (x, y) coordinates of all the points have to be rational 
numbers, no square roots or cube roots allowed because radicals are sticky: once 
an area calculation involves radicals, the radicals usually stick around and we 
will not get the area to be . As a case in point, there is an area formula for a 
triangle with vertices at (x1, y1) and (x2, y2) and (0,0): . If any 
coordinates had radicals, the area would have radicals.

Monsky wrote down a rule to use which assigns colors to points 
according to their coordinates. The rule was followed in Figure 1. The three 
colors are Red, Green and Blue (marked R, G, B.) His rule fit Sperner’s Lemma, 
which claimed that there would always be an odd number of triangles with all 
three colors assigned to vertices. Monsky also noted that the square could be 
manipulated so that one of these tri-color triangles has a vertex at the origin, as 
in our Figure 1. Our area calculation for that triangle is an easy . Monsky had 
to deal with the general case, not knowing the exact coordinates of the tri-color 
triangle. He was able to show that its area had to be  with m even (in our case, 
m = 2.) The general case requiring area , n odd was thus proved unobtainable. 
The proof is famous for his dealing with all possible cases in one shot, with no 
drawing to stand for all cases. Even for a civilized number of triangles like 15, 
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there would be approximately a zillion ways to draw the little triangles; in other 
words, a case-by-case proof would have been crazy to even consider.

The reader may correctly regard the above argument as cheesy, since 
our tri-color triangle never had a chance to have area . That is actually the point 
of Monsky’s theorem: any suitable drawing would be impossible! 

Getting around Monsky  

Since area calculations in non-Euclidean geometries do not use the 
Euclidean area formula, we cannot help but wonder about non-Euclidean cases. 
While we do not challenge Monsky itself, we pose a Monsky-like question: can 
we tile a rectangle with three triangles of equal area? 

In this article, we try this question in three geometries: Euclidean, 
hyperbolic, and elliptic. We will find only hyperbolic geometry allows such a 
dissection. 

We define a rectangle as an equiangular quadrilateral. That way, we can 
think about rectangles in all three geometries. In all three geometries, our figure 
has three interior faces, all triangles. The Euler characteristic formula forces a 
relationship between the number of vertices and edges.

 V − E + F = V − E + 3 = 1              E − V = 2.

A suitable arrangement of three triangles filling a rectangle has to be 
one of these two in Figure 2. The vertex which is common to all three triangles 
can be on the boundary or inside the rectangle. Adding another edge can only 
increase the number of vertices by 1. We cannot add an edge so that another face 
is created. All we can do is append a little antenna to an existing vertex and stick 
a vertex on the end of that new edge, as in Figure 2. But that does not change 
our triangulation. Now we have to look for sizes which give us three triangles 
of equal area.

Figure 2.
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The Euclidean case is impossible regardless of the rectangle’s 
dimensions. No matter how the options are scaled, the area of the largest of the 
three triangles will equal the area of the other two combined.

Elliptic geometry is the non-Euclidean geometry of positive curvature, 
like a sphere. The sum of the angles of an elliptic triangle is greater than π 
radians. The area of an elliptic triangle is the sum of its angles minus π. Although 
we should not judge elliptic areas by appearance alone, those areas are like areas 
on a globe. Figure 3 shows our best candidate for the elliptic version where we 
try to get triangle CMB the same area as triangle MBA: get the triangles tall and 
thin. The segments MC and MB bend away from the center, making that middle 
triangle bigger than the sum of the areas of the other two triangles, a situation 
actually worse than the Euclidean, because the area of the largest triangle will be 
greater than the sum of the other two triangles.

Figure 3.
   
The hyperbolic example in Figure 4, however, gives us three triangles 

of equal area which tile a hyperbolic rectangle. Hyperbolic geometry is the non-
Euclidean geometry of negative curvature. For our example, we have used the 
Poincaré model of hyperbolic geometry. Hyperbolic space is the set of points 
inside the large circle. The four hyperbolic lines are arcs of Euclidean circles 
orthogonal to the boundary circle. The two hyperbolic segments inside the 
rectangle are also on arcs of circles orthogonal to the boundary; we didn’t draw 
their entire arcs. Angles B M A and C M D are . The vertex angles are all  and 
M is the midpoint of A D. (The two disk models of our non-Euclidean geometries 
are presented in [2]).
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Figure 4. Hyperbolic solution.

The hyperbolic area of a triangle is π minus the sum of the angles. So, 
like the elliptic case, we want the sum of the angles of each triangle to be the 
same. Unlike the previous two cases, appearances are not much use in judging 
hyperbolic area because a little area near the boundary counts as a lot more area 
than the same-looking area near the center. There is a hyperbolic trigonometric 
formula for triangle ABC with side lengths a, b, c opposite angles A, B, C.  

 sin A sin B cosh c = cos C + cos A cos B                             (1)

First, the angle sums of the outer two triangles are  and the 
middle triangle has sum , which is  for each triangle. Now, we 
must verify that the length M B is the same for both triangles which have side 
MB. For the triangle ABM, this measurement in (1) gives us

 ,

which implies cosh . For the triangle BMC, (1) 
becomes 

 
We obtain the sine and cosine of  from trigonometric difference 

formulas:  
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The angles also determine the lengths of the sides of the hyperbolic 
rectangle ABCD. We now verify the hyperbolic lengths AD and BC are equal by 
calculation. For triangle BCM, (1) becomes

 

For triangle ABM, (1) becomes

 

The double-angle formula for cosh(2MA) = cosh AD gives us

The sides CD and AB have to be the same size because triangle ABM is 
congruent to triangle DCM. These three triangles really do fit together to form a 
hyperbolic rectangle.

The interesting idea is that the two segments MB and MC bulge in the 
direction which decreases the area of the middle triangle, which is our only 
hope in cracking the case. Yet, the arcs we refer to as lines in the non-Euclidean 
models are actually straight in hyperbolic geometry. The hyperbolic segments 
do not actually bulge in hyperbolic space! Our Euclidean eyes allow us to see 
a useful attribute of hyperbolic space: we need negative curvature to dissect a 
rectangle into three triangles of equal area.
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