116

74

Unsupervised Part-of-Speech Tagging: An
Introduction

Alex Brooks
Monmouth College

Mike Stees
Monmouth College

The process of assigning parts of speech to words based on context is known
as part-of-speech tagging. One traditional approach is to use labeled instanc-
es of text in order to train an algorithm for the part-of-speech tagging process.
However, labeled data is often very difficult or time consuming to obtain de-
pending on the domain. That said, unlabeled data can be relatively easy to
collect. Unsupervised learning uses strictly unlabeled data to solve a problem.
In this paper we provide an introduction to statistical unsupervised part-of-
speech tagging with a focus on methods using Hidden Markov Models and
extensions proposed in some of the relevant literature to date. We provide
some historical background on corpora development and automated tagging,
discuss the use of lexicons in unsupervised methods, present a general method
using Hidden Markov Models, and conclude with a presentation of extensions
and other approaches.

1. Introduction to Part-of-Speech Tagging

As early as elementary school, humans learn about various parts of speech
and how those parts of speech help define the structure and meaning of a sen-
tence. Oftentimes, many words have many different associated parts of speech,
each of which can be expressed with labels, or fags. The word model can be
described as either a verb or a noun, for instance. In order to determine which
tag is associated with model, a context must be given. In the sentence The
class was going to model the experiment based on previous research, model is
a verb. However, in the sentence The model of the boat was almost complete,
model is a noun. The process of assigning parts of speech to words based on
context is known as part-of-speech tagging [4]. Part-of-speech (POS) tagging
is one of the early tasks in processing natural languages. Some of these tasks
include parsing, information extraction, and information retrieval. Small im-
provements in the tagging process have the potential to yield larger improve-
ments overall in many advanced natural language tasks, since POS tagging is a
vital pre-processing step [10]. For this reason, research has focused on practi-

Alex Brooks & Mike Stees 117

cal methods that yield the highest accuracies for POS tagging.

This paper provides an introduction to statistical unsupervised part-of-
speech tagging with a focus on methods using Hidden Markov Models and
extensions proposed in some of the relevant literature to date. The paper is or-
ganized as follows. Section 2 will provide some history on automated tagging
and corpora’ development, specifically the Penn Treebank and the Brown Cor-
pus. Section 3 will introduce unsupervised learning, discuss the use of lexicons
in unsupervised POS tagging, and present a general method for unsupervised
POS tagging. Section 4 will review some extensions of the method presented in
Section 3, as well as other statistical approaches that do not use HMMs. Final-
ly, Section 5 will present a non-statistical approach.

2. History of Corpora and Automated Tagging

Part-of-speech (POS) tagging has been performed by humans for decades.
Most research in POS tagging resulted from work on corpora or large sets of
structured text. One key use of corpora in natural language processing tasks
requires sections of text to be annotated. Annotated corpora are usually known
as Treebanks or Parsed Corpora. The most popular annotated corpora today are
the Brown Corpus and the Penn Treebank.

The Brown Corpus was first prepared between 1963 and 1964 and is cur-
rently available in six versions, each containing the same basic text consisting
of over 1 million words. Form A, the original version, simply contained text
which was not tagged. Form B, the second version, is a stripped version of
Form A, where all forms of punctuation symbols, excluding the following,
have been removed: hyphens, apostrophes, and symbols for formulas and ellip-
ses. Form C, the third version, is the first to be tagged and have an associated
tagset” which is found in Appendix A. The final three versions, Bergen Form I,
Bergen Form II, and Brown MARC Form, are all versions which contain minor
revisions of the first three versions. Overall, the corpus is divided into 500 sam-
ples, each consisting of 2,000+ words. Every sample begins at the beginning of
a sentence but not necessarily at the beginning of a paragraph or larger contex-
tual divider. Once a sample exceeds 2,000 words the sample is ended after the
final sentence, is complete. Some of the texts included are press reports and
editorials, religious texts, general fiction texts, science fiction texts, and ro-
mance and love story texts. [6]

The Penn Treebank project was developed between 1989 and 1996 at the
University of Pennsylvania. The corpus includes approximately 7 million
words of tagged text, 3 million words of skeletally-parsed text, over 2 million
words of text parsed for predicate-argument structure, and 1.6 million words of
transcribed speech annotated for disfluencies. The treebank uses a tagset of 48,
found in Appendix B, where 36 tags are allocated for parts of speech and 12
tags are allocated for punctuation and currency. Some of the annotated texts
included in the treebank are Department of Energy scientific abstracts, Depart-
ment of Agriculture bulletins, IBM computer manuals, and a retagging of the
Brown Corpus material. [16] [26]

118 Unsupervised Part-of-Speech Tagging

Although both corpora provide the same functionality, there are many dif-
ferences between the Brown Corpus and the Penn Treebank. For instance, the
Brown Corpus allows for compound tagging and the Penn Treebank does not.
Consider tagging the contraction /’m. By using the Brown Corpus tagset, /'m
would be annotated with two tags, /'m/PPSS+BEM [6], whereas using the
Penn Treebank tagset, /'m would be split and separately tagged, I/PPSS 'm/
BEM [16]. Although the Penn Treebank tagset is based off of the Brown Cor-
pus tagset, many tags and properties of the set were removed [16]. For in-
stance, compound tagging was removed in favor of splitting contractions into
the corresponding separate parts, as seen above. Further, the Brown Corpus
tagset includes tags that are specific to particular lexical items. For example,
the Brown Corpus distinguishes three forms of do and eight forms of be [16].
Although the goal of the Brown Corpus was to be robust in distinguishing tags
for certain lexical items, the goal of the Penn Treebank developers was to re-
move possible redundancies from the Brown Corpus tagset. As such the devel-
opers attempted to make the Penn Treebank more concise, resulting in a re-
duced tagset of 48 tags [16] [26].

Considering the size of the Brown Corpus and the Penn Treebank, tagging
either corpus is by no means a simple feat. To elaborate, consider the sentence

The lazy gray sloth climbed up the tree (1)
There are two main ways to visualize the tagged version of (1): by an in-
text tagged sentence or by a parse tree. Using the Penn Treebank tagset, we can

generate the corresponding tagged sentence and parse tree for (1), as seen in
(2) and in Figure 1, respectively.

The/DT lazy/l) gray/]J sloth/NN climbed/VBD up/IN the/D T tree/NN @)

S

\

Np/ VP

DT JJ JJ NN VBD PP
| | | | | AN

THE LAZY GRAY SLOTH CLIMBED IN NP

| ALY

UP DT NN

| |

THE TREE

Figure 1
Parse Tree for The lazy gray sloth climbed up the tree

Alex Brooks & Mike Stees 119

Regardless of which approach is considered, there are clear complexities
in tagging even this simple sentence. Consider the possibility of having three
distinct tags for each word in (1). By disregarding context, this results in
6,561 possible tag sequences for this single sentence. For an average sized
paragraph, this escalates to 3x10°° possible sequences. With this in mind,
there is an inherent difficulty in hand tagging large sets of data. Consequent-
ly, interest arose in automating the tagging process by using computers be-
ginning in the 1950s and 1960s [5]. One of the earliest programs for perform-
ing automatic POS tagging was the TAGGIT system designed by Greene and
Rubin in 1971 using a transformation-based® approach [4]. The system was a
major step in fully tagging the Brown Corpus generating Form C. The pro-
gram was initially run on the corpus, correctly annotating roughly three-
fourths of the text, and the remaining text was manually annotated [4]. As
research continued, entirely automatic transformation-based methods began
to arise. Most systems required the use of /exicons, or dictionaries, which
contained every possible tag for the words that were provided [5]. The sys-
tems annotated text by first assigning every possible part of speech to all of
the words in the text. Then, the sequence of rules was consulted, eliminating
tags which were not possible in the given contexts. Multiple passes through
the text were done using the rules until each word was annotated with only
one tag.

There are many issues associated with hard-coding rules for trans-
formation-based methods. They do not transfer nicely to new tagsets, lan-
guages, or corpora [5]. This is because not all tagsets have the same tags and
not all languages have the same words or words with the same meaning. Fur-
ther, sentence structure for languages can be different and thus the context
for rules do not transfer easily. Finally, the transformation-based methods
require that humans write the rules, which can be a very lengthy and compli-
cated task. For these reasons most of the research transitioned away from
transformation-based methods and focused on statistical approaches. Alt-
hough these statistical approaches will be the focus of this paper, there will
be some discussion on the transformation-based methods in Section 5.

3. Unsupervised Part-of-Speech Tagging

Unsupervised learning methods learn patterns with the absence of explic-
it feedback [22]. Unsupervised methods operate on data that have not been
tagged with expected results. When applying unsupervised learning to POS
tagging, the only information available in some cases is a lexicon. In other
cases no lexicon is provided and the process relies completely on the given
data.

In the following subsection a discussion on the use of lexicons in unsu-
pervised learning methods is provided. Afterward, a general unsupervised
learning method using Hidden Markov Models (HMMs) for POS tagging is
presented. For readers unfamiliar with HMMs, please refer to Appendix C.

120 Unsupervised Part-of-Speech Tagging

3.1 Lexicons in Unsupervised Learning

It has been shown in [1] that using a reduced lexicon greatly improves
the tagging accuracy of unsupervised methods. This is because filtering the
lexicon removes tags that are statistically unlikely to occur. As a result, noise
is removed from the lexicon and processing becomes more efficient and
more accurate, since the more statistically likely cases are favored. However,
as pointed out by [1], obtaining a reduced lexicon is dependent on some form
of human intervention. In other words, the method can no longer be classi-
fied as unsupervised as it requires some form of manually tagged data or a
lexicon that has been manually edited by a human. Future research might
consider focusing on methods of coping with noisy lexicons.

The use of lexicons in general should be further discussed within the
context of unsupervised methods. An important thought to consider is how
the use of any kind of lexicon affects the classification of a POS tagging
method. Reviewing our definition of unsupervised learning, feedback is not
received on any decisions made by the tagger. Although using lexicons does
not result in any direct feedback on any attempted tagging, it certainly limits
the possible classifications a word can be given. With this in mind, any re-
sults presented in the following sections will be clearly separated based on
whether the lexicon is a full lexicon or an optimized lexicon.

3.2 Generalized Process with Hidden Markov Models

In part-of-speech tagging, we can use HMMs to model the dependency
of the context of words based on associated lexical tags [4]. This is done by
estimating the model parameters A (state transition probabilities), B
(emission/observation probabilities), and IT (initial state probabilities) from a
training set. The state transition probabilities represent the probabilities of a
certain tag following a given tag and the emission probabilities represent the
probabilities of a word being labeled a tag. The "hidden" aspect of the HMM
refers to the set of states. The "observed" aspects of the HMM are the sets of
words for each tag in a lexicon. Since, in any given context, only one part of
speech is correct for a single word, we must use the HMM to identify the
most likely sequence of tags associated with our set of text.

In the example in Appendix C, the employer set the model parameters.
This is not done for unsupervised part-of-speech tagging. Rather, we must
begin with a set of, usually uniform, probabilities and train the HMM to re-
flect statistically accurate sets of probabilities. Through training the HMM
we maximize the probabilities of the parameters, a process known as maxi-
mum-likelihood estimation (MLE). The maximization is done by using an
algorithm known as the Baum-Welch or Forward-Backward algorithm [4].
This algorithm iteratively constructs a sequence of models (sets of parame-
ters) which improve the probability of the training data [18]. This algorithm
is labeled as an Expectation Maximization method for MLE.

Alex Brooks & Mike Stees 121

Let N be the number of possible tags, o be the output sequence (the sen-
tence), and o, represent the individual words in the sentence at "time” ¢. The
algorithm begins by recursively defining two sets of probabilities: the for-
ward probabilities:

N

a;(r+1) = Z‘?/(f) aijbjo ®
i=1

Where b;(, is the emission probability given state j at time ¢ and backward
probabilities:

N
i)=Y B+ 1)ai; by, @)
J=1

where bj(,,;) is the emission probability given state j at time #+1 and
B;(T) =1 for all j, where T is the final time in the iteration. At time ¢, the for-
ward probability a,(¢) is the joint probability of the sequence of observations
{01, 0, ...,0,} up to time ¢ and the likelihood of observing o; at time ¢. Similar-
ly, the backward probability f(f) is the probability of the sequence of observa-
tions {041, 012, ..., o7} given that we observe o; at time . It follows that the
probability of the entire sequence {01, 0s,..., 07} is

P

N
Z“j(f) Bit+1)aijbje,) (5)

i=1 j=l

~

Note that (5) holds true regardless of the value ¢. Further, given an initial
choice for 4, B, and II, we may compute the probability of a transition be-
tween state s; at time ¢ and state s; at time #+1, identified as y; (?):

@ (O dijbjo,) Bi+1)
i) =~ ©)

By summing y;; for all t=1...T, we have the expected number of transitions
from state s, to state s; in the sequence. This allows us to estimate the values
for a;j, bj, and ;2

122 Unsupervised Part-of-Speech Tagging

o = Z/ 1 71/(1) e
Y =_l Zm:l Yim (t)

ZZ_‘J N0
I (1) B(0)

a; () Bi(t) ifk =o;
0 otherwise

where b ik = { (8)

a,-j=

a; (DB, (1)

= 9
T P)

To clarify, equations (7 - 9) represent the following information [21]: is

the expected number of transitions from state s; to s;

@ —
> the expected state transitions from s;

the expected number of times in state s; and observing & (o)
the expected number of times in state s;

Bik:
m; : the expected frequency in state s; at time 7 = 1

In most cases the initial probabilities for the parameters are uniform
[28]. That is, the state transition parameters are uniform over all tags and the
emission probabilities are uniform over the set of possible words for a given
tag.

In summary, to find the ML estimates for our parameters 4, B, and II
using the Baum-Welch algorithm, we choose some starting values and then
apply equations (7 - 9) to compute new values. We iterate through this pro-
cess until the parameters converge to maximum values. Note that regardless
of the initial parameter values, the parameters will always converge to a lo-
cal maximum [28]. Once the parameters are maximized we can produce the
most likely sequence of tags for our text. This process can be thought of as
maximizing over all sequences which might generate a sequence of
tags S [4]. The algorithm we will be using to perform this task is a dynamic
programming algorithm called the Viterbi algorithm [27].

In order to find the most probable sequence of states V for the given
sequence of observations O we must define the following quantity:

¢ =7 by, fori<i=N (10)

¢i(t) = max Py ..vi=1,01..0) (11)

viel j=L . (t=1)

Alex Brooks & Mike Stees 123

This represents the highest probability along a single path at time ¢, ending at
state s; and accounting for the first # observations. By induction we can show

it +1) = max (&i(1) ai ;) b, (12)

To retrieve the state sequence, we need to keep track of the argument which
maximized equation (12) for each 7 and j. To do so, we must define a new
function, w

(1) =0 (13)

lﬁj(t)zalrgmax(qﬁ,-(t—l)a,-j) for2 2t T, LEj <N (14)

<i=N

Finally, to find the most probable sequence of states or Viterbi path we must
perform backtracking,

vp = alrgmfl\?((0:(T1)) (15)
v’;:(ﬁv;k+l(t+1) el -1, T-2, ..l (16)

For more information on the algorithms and other applications of HMMs see
[21].

4. Extensions and Other Statistical Models

We have divided the extensions of approaches using HMMs into Expec-
tation Maximization (EM) and Bayesian. Following the extensions are other
statistical approaches to unsupervised POS tagging, which do not require a
HMM, including clustering, prototyping, and methods for multi-lingual POS

tagging.

4.1 Expectation Maximization

For most problems using HMMs, there are many mappings between an
underlying distribution and the distribution regarding the observation [19].
The EM algorithm seeks to produce Maximum Likelihood Estimates
(MLEs), or estimations of the parameters of a statistical model. The EM al-
gorithm is defined in two steps: an expectation step followed by a maximiza-
tion step [19]. This first step is with respect to the unknown variables and
uses the current estimates of the parameters [19]. The second step provides a
new estimate [19]. The algorithm is iterative and thus steps 1 and 2 are re-
peated until the estimates converge.

124 Unsupervised Part-of-Speech Tagging

The first modifications we will present come from [15] and are extended in
[13] [14]. The goal in [15] was to introduce equivalence classes to reduce the
number of parameters in the model, alleviating problems in obtaining reliable
estimates for individual words. Each class contains a set of words that have the
same parts of speech. For example, words that can only be nouns belong to the
noun class, words that can be nouns or verbs belong to the noun-or-verb class,
and so on. The number of equivalence classes required becomes independent of
the size of the dictionary, accommodating new words without any need for re-
training [14]. By using equivalence classes, dependency on the subject domain
is removed as well. Rather than assigning probabilities to single parts of speech
and training the HMM accordingly, parts of speech are replaced with the equiv-
alence classes. Each equivalence class is initially assigned equal probabilities.
Once the HMM is trained, the probability for an equivalence class is divided
evenly between the parts of speech the class represents. For example, if the
equivalence class noun-or-verb class has a probability of 0.3, the noun and verb
parts of speech each receive 0.15 probability. By using equivalence classes
within the HMM, dictionaries containing hundreds of thousands of words can
be represented by only a few hundred classes. The results in [14] report errors
as low as 4% for an optimized lexicon and errors around 22.9% for a full lexi-
con [1].

Another modification to the typical HMM is presented in [1]. The goal of
[1] was to introduce more context into tagging. Originally, the probability of a
word was conditioned only on the current tag. However, there may exist de-
pendencies between a word and the parts-of-speech of the words preceding and
following it. With this in mind, [1] modified the structure of the HMM to esti-
mate the probability of a word based on the tags immediately preceding and
following it. They called this structure a contextualized HMM. By increasing
the context size during the estimation, it was found desirable to further smooth
the estimations using a technique found in [20]. These modifications result in
errors around 6% for an optimized lexicon and 23.1% for a full lexicon [1].

The final two modifications to the EM approach we will present are dis-
cussed in [28]. The goal of [28] was to continue using a simple HMM with
improvements on the state transition probabilities and emission probabilities,
while still using a full lexicon. The first improvement looked at constraining
the HMM, specifically the state transition probabilities, to maintain a specified
marginal distribution. The goal of this improvement was to improve the quality
of the transition probabilities by keeping the parameters to reasonable values
[28]. The target distribution is found using the probability of each tag in the
complete text being tagged [28]. After finding the target distribution, the M-
step of the EM task is modified, adding a constraint requiring that the transition
probabilities stay within the defined distribution. By including this constraint,
the tagging error rate from a uniform initialization of the parameters improves
from 18.7% to 9.5% after several iterations of the Baum-Welch algorithm in
each case [28]. These results, however, require having a reasonable tag distri-

Alex Brooks & Mike Stees 125

bution.

The second improvement from [28] focuses on improving the emission
probabilities. The issue found with using the standard EM process is that it
does not incorporate any form of "parameter tying" over the word emission
probabilities [28]. In other words, the parameters are treated independently,
when many words play similar syntactic roles. They add feature vectors for
each word, each consisting of mutual information between the word and a con-
text. Once the feature vectors have been determined, the similarity between
two words is computed. Then, a similarity measure is used to smooth the pa-
rameters by taking similarity weighted averages. Specifically, the emission
probabilities are smoothed. By performing this modification, the tagging error
rate improves from 18.7% to 12.6%. After combining the two modifications
the tagging error is slightly worse than strictly using the first modification, with
an error rate of 9.97%.

4.2 Bayesian Inference

Unlike the EM approaches where the parameters are maximized, a Bayesi-
an approach integrates over all possible parameter values [8]. This difference
allows the learned structure to have a high probability over a range of possible
parameters and permits the use of a prior probability distribution, hereafter
termed a prior. Most words are associated with very few parts of speech as
previously mentioned, which results in sparse emission probabilities. Priors
allow us to preference the models that have these sparse emission probabilities
[7]. The goal is to use a prior and the likelihood estimation (Equation (5)) to
estimate the posterior distribution. The posterior distribution equates to the
probability of the estimated model given a corpus to tag. In most cases, the
posterior distribution does not have a closed form. However, there are two
main techniques to approximate the distribution: Variational Bayes and Mar-
kov Chain Monte Carlo [11]. In [8], Gibbs sampling, a Markov Chain Monte
Carlo method, is used to produce samples from the posterior distribution. This
process is done by iteratively re-sampling each tag according to its conditional
distribution given the current values of all other tags [8]. In contrast, Variation-
al Bayesian inference attempts to find a function which minimizes an upper
bound called the Variational Free Energy [11]. We can use the factorized form
of the function to accurately approximate the posterior distribution [11]. The
process requires only minor modifications of the M-step in the Baum-Welch
algorithm.

4.3 Other Models
4.3.1 Clustering

The approach taken in [23] is similar to the contextualized HMM found in
[1] where context of a word is increased by adding dependence on the immedi-
ately previous and following tags. The context is incorporated through feature
vectors labeled left context and right context vectors, respectively [23]. The

126 Unsupervised Part-of-Speech Tagging

difference between [23] and [1] is that the underlying model was not a HMM.
The vectors are composed into a matrix and singular value decomposition
(SVD) is applied, which is a method for factorizing matrices. For more infor-
mation on SVD, refer to [12]. There are four different tagging approaches [23]
considered, including: induction based on word type only; induction based on
word type and context; induction based on word type and context, restricted to
"natural" contexts; and induction based on word type and context, using gener-
alized left and right context vectors [23]. For more information on the different
approaches see [23].

In context distribution clustering, as presented in [3], each word defines a
probability distribution over all contexts, notably the probability of the context
given the word [3]. Since data is generally too sparse to estimate context distri-
butions for most words in a corpus, [3] approximates the context distributions
as probability distributions over ordered pairs of clusters. In other words, the
same idea of introducing context through adding dependencies on the immedi-
ately previous and following words is done. In [3], an iterative algorithm is
presented to estimate the context distributions, further using ideas from EM
and Bayesian Inference to define the categories of a text.

4.3.2 Prototyping

In a prototyping approach, prototypical examples are specified for each
target label or label configuration. For example, when modeling the Penn Tree-
bank, the treebank tagset and a few examples of each tag are listed [9]. The
general approach taken in [9] is to use distributional similarity to link a given
word to similar prototypes. These links are then encoded as features in a log-
linear generative model [9]. The model used is a chain of Markov random
fields, which are the undirected equivalent of HMMs [9]. For more infor-
mation on prototype-driven learning applied to POS tagging, see [9].

4.3.3 Multilingual Learning

The key hypothesis of multilingual learning is that by combining cues
from multiple languages, the structure of each becomes more apparent [24].
The work in [24] is based on the idea that patterns of ambiguity inherent in
POS tags differ across languages. At the word level, a word with tag ambiguity
in one language may correspond to a word with an unambiguous tag in another
language [24]. Although the learning style can address ambiguities in each
language, it must be flexible enough to accommodate cross-lingual variations
such as the tagset and the syntax of a sentence [24].

Within multilingual learning, training occurs on parallel data and distinct
tagsets. In other words, the training data contains the same text presented in
multiple languages where each sentence contains the same content in its re-
spective language. Further, each tagset available to the learner is tied to a spe-
cific language. There is a possibility for the tagsets to be the same, however
this does not always occur since some languages do not have certain parts-of-
speech. For example, Serbian is a language without articles [24].

Alex Brooks & Mike Stees 127

I love cake

J aime le gateau

Figure 2
Graphical structure of the bilingual model based on word alignments [24].

A bilingual model for jointly tagging parallel streams of text in two lan-
guages is proposed in [24]. The model is designed to permit information to
flow across the language barrier [24]. They assume that for pairs of words that
share similar semantic or syntactic functions, tags will be statistically correlat-
ed [24]. After using techniques from machine translation to align similar words
as seen in Figure 2, a hierarchical Bayesian model is formulated in [24] that
exploits both language-specific and cross-lingual patterns to explain the ob-
served bilingual sentences. After constructing the model, Bayesian inference is
used across the defined parameters to construct the emission probabilities for
generating sequences of tags [24]. Tests were run across all pairs of the follow-
ing four languages: English, Serbian, Bulgarian, and Slovene. Of the tests run,
the highest accuracies achieved using full lexicons for each language are
92.01%, 91.75%, 94.48%, and 95.10%, respectively [24]. Tests were per-
formed using reduced lexicons containing only the 100 most frequently used
words for all pairs of the four languages, resulting in 71.34% 56.91%, 62.55%,
and 59.68%, respectively [24]. All results were improvements on mono-lingual
models of the same structure [24].

A multilingual model allowing the inclusion of more than two languages
in the training process is proposed in [25]. Three tests were performed on sets
of eight languages including Bulgarian, Czech, English, Estonian, Hungarian,
Romanian, Slovene, and Serbian, where each test varies the amount of infor-
mation provided in the lexicon [25]. Results for a full lexicon are less than ide-
al, improving accuracy of only four out of the eight languages, compared to the
bilingual model from [24]. For the two reduced lexicon tests, where words
were included based on frequency of the words (frequency of greater than 5
and 10 respectively), five of the eight languages improved in accuracy over the
bilingual model [25]. Of all tests performed, English did not improve over the
bilingual model.

128 Unsupervised Part-of-Speech Tagging
5. Transformation-Based Learning

Training a part-of-speech tagger using transformation-based learning re-
quires a simple set of deterministic rules [2], as opposed to statistical ap-
proaches, which require large sets of probabilities. An unsupervised transfor-
mation-based learner is comprised of three components: the initial state anno-
tator, the set of transformation templates, and the scoring criterion [2]. Initial-
ly, the learner has access to an unannotated corpus and a lexicon with words
and the allowable tags for each word [2]. The initial state annotator tags each
word in the corpus with a list of allowable tags. The transformation templates
are for reducing the uncertainty of the correct tag of a word in a particular con-
text [2]. All learned transformations in [2] will have the following form:

Change the tag of a word from X to Y in context C 17

X is defined as a set of two or more tags and Y is a single tag where ¥ € X.
Some example transformations which were learned by the learner in [2] are:

Change tag from NN_VB_VBP to VBP if the previous tag is NNS
Change tag from NN_VB to VB if the previous tag is MD
Change tag from JJ_NNP to J] if the previous tag is NNS

In the scoring criterion, for each learning iteration, the score of a transfor-
mation is computed based on the current tagging of the training set. To score
the transformation in (17), for each tag Z € X where Z # YV, define the follow-
ing:

I = % = incontext(Z, () (18)
Where freq(Y) is the number of occurrences of words tagged with Y in the cor-
pus, freq(Z) is the number of occurrences of words tagged with Z in the corpus,
and incontext(Z, C) is the number of times a word tagged with Z occurs in con-
text C in the training corpus [2]. In (18), freq(Y) + freq(Z) represents the rela-
tive frequency of tag Y to tag Z. Note that when evaluating (18) for different
tags Z, freq(Y) remains constant. Thus for larger values of F, the less likely Y
is a better choice than Z (i.e. this occurs when Z is used relatively infrequently
for different words but occurs many times in the context of C in the training
corpus). Therefore, F' gives us a way to quantify the benefit of choosing tag Y
over tag Z or vice versa. Now, this calculation is used to find the "best" relative
alternative tag choose for the transformation in (17) by defining the following:

R = argmax,(F) (19)

Alex Brooks & Mike Stees 129

Finally, R is used to determine the validity of choosing Y. This is done by scor-
ing the transformation as follows:

freq (Y)
freq (Z2)

S = incontext(Y, C) — xincontext(R, C) (20)

This recalculates F' for choice Z = R and compares it to the number of times Y
shows up in context C.

If (20) is positive, than Y is a better choice than R; the higher the score is,
the better the choice Y is for the transformation in (17).

Now that a method is defined for scoring the transformations, the learner
calculates the scores for each transformation and chooses the transformation
with the maximum score for each iteration. Once no positive scoring transfor-
mations can be found, learning is halted [2].

Training on the Penn Treebank and the Brown Corpus, the tagging accura-
cy converged to an error of 5% after learning over 1,150 transformations, with
an initial tagging accuracy of a 9.3% error [2]. While these results are promis-
ing, the vast majority of research on transformation-based learning was con-
ducted in the 1990s and interest has since declined.

6. Conclusion

Techniques exploring unsupervised part-of-speech tagging are motivated
by the increasing availability of unlabeled data. With current research present-
ing extensions of a general Expected Maximization method and other ap-
proaches for unsupervised POS tagging, accuracies are showing overall im-
provements. As we discussed earlier, small improvements in the tagging pro-
cess have the potential to yield larger improvements overall in many advanced
natural language tasks, since POS tagging is a vital pre-processing step [10].
Although many different approaches have been developed for the tagging pro-
cess, unsupervised methods which utilize Hidden Markov Models seem to be
the most popular and perform the best. It was our goal in writing this paper to
introduce material associated with part-of-speech tagging. In particular by fo-
cusing on corpus history, automated tagging, lexicons, a general model, and
extensions on the general model for unsupervised POS tagging, we hoped to
present a comprehensive introduction to this material.

130 Unsupervised Part-of-Speech Tagging

Notes

1.) Plural of corpus, or large set of structured text
2.) Set of tags

3.) Methods using rules

4.) Hyphenated before regular tag

5.) Hyphenated after regular tag

Alex Brooks & Mike Stees 131
References

1.) Michele Banko and Robert C. Moore. Part of speech tagging in context. In Proceed-
ings of the 20th international conference on Computational Linguistics, COLING
’04, Stroudsburg, PA, USA, 2004. Association for Computational Linguistics.

2.) Eric Brill. Unsupervised learning of disambiguation rules for part of speech tagging.
In Proceedings of the third workshop on very large corpora, volume 30, pages 1—
13. Somerset, New Jersey: Association for Computational Linguistics, 1995.

3.) Alexander Clark. Inducing syntactic categories by context distribution clustering. In
Proceedings of the 2nd workshop on Learning language in logic and the 4th con-
ference on Computational natural language learning-Volume 7, pages 91-94. As-
sociation for Computational Linguistics, 2000.

4.) Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A practical part-of-
speech tagger. In Proceedings of the third conference on Applied natural language
processing, ANLC ’92, pages 133—140, Stroudsburg, PA, USA, 1992. Association
for Computational Linguistics.

5.) R. Dale, H.L. Moisl, and H.L. Somers. Handbook of Natural Language Processing,
volume 1. Marcel Dekker, 2000.

6.) W Nelson Francis and Henry Kucera. Brown corpus manual. Letters to the Editor, 5
(2):7, 1979.

7.) Jianfeng Gao and Mark Johnson. A comparison of bayesian estimators for unsuper-
vised hidden markov model pos taggers. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing, pages 344—352. Association for
Computational Linguistics, 2008.

8.) Sharon Goldwater and Tom Griffiths. A fully bayesian approach to unsupervised
part-of-speech tagging. In Annual Meeting-Association for Computational Lin-
guistics, volume 45, page 744, 2007.

9.) Aria Haghighi and Dan Klein. Prototype-driven learning for sequence models. In
Proceedings of the main conference on Human Language Technology Conference
of the North American Chapter of the Association of Computational Linguistics,
pages 320—- 327. Association for Computational Linguistics, 2006

10.) Association for Computational Linguistics, 2006.

11.) Nitin Indurkhya and Fred J Damerau. Handbook of Natural Language Processing,
volume 2. Chapman & Hall/CRC, 2010.

12.) Mark Johnson. Why doesn’t em find good hmm pos-taggers. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages 296-305,
2007.

13.) Virginia Klema and Alan Laub. The singular value decomposition: Its computation

132 Unsupervised Part-of-Speech Tagging

and some applications. Automatic Control, IEEE Transactions on, 25(2):164—-176,
1980.

14.) Julian Kupiec. Augmenting a hidden markov model for phrase-dependent word
tagging. In Proceedings of the workshop on Speech and Natural Language, pages
92-98. Association for Computational Linguistics, 1989.

15.) Julian Kupiec. Robust part-of-speech tagging using a hidden markov model. Com-
puter Speech & Language, 6(3):225-242, 1992.

16.) Julien Kupiec. Probabilistic models of short and long distance word dependencies
in running text. In Proceedings of the workshop on Speech and Natural Language,
pages 290-295. Association for Computational Linguistics, 1989.

17.) Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a
large annotated corpus of english: the penn treebank. Comput. Linguist., 19(2):313
—330, June 1993.

18.) S. Marsland. Machine learning: an algorithmic perspective. Chapman & Hall/CRC,
20009.

19.) Bernard Merialdo. Tagging english text with a probabilistic model. Comput. Lin-
guist., 20(2):155-171, June 1994.

20.) Todd K Moon. The expectation-maximization algorithm. Signal processing maga-
zine, IEEE, 13(6):47-60, 1996.

21.) Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic de-
pendences in stochastic language modelling.

22.) Computer Speech and Language, 8(1):1-38, 1994.

23.) Lawrence R Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

24.) S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Series in Artificial Intelligence. Prentice Hall, 2010.

25.) Hinrich Schiitze. Distributional part-of-speech tagging. In Proceedings of the sev-
enth conference on European chapter of the Association for Computational Lin-
guistics, pages 141-148. Morgan Kaufmann Publishers Inc., 1995.

26.) Benjamin Snyder, Tahira Naseem, Jacob Eisenstein, and Regina Barzilay. Unsu-
pervised multilingual learning for pos tagging. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 1041-1050. Associ-
ation for Computational Linguistics, 2008.

27.) Benjamin Snyder, Tahira Naseem, Jacob Eisenstein, and Regina Barzilay. Adding
more languages improves unsupervised multilingual part-of-speech tagging: a
bayesian non-parametric approach. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North American Chapter of the Associa-

Alex Brooks & Mike Stees 133

tion for Computational Linguistics, pages 83-91. Association for Computational
Linguistics, 2009.

28.) Ann Taylor, Mitchell Marcus, and Beatrice Santorini. The penn treebank: An over-
view, 2003.

29.) Andrew Viterbi. Error bounds for convolutional codes and an asymptotically opti-

mum decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260—
269, 1967.

30.) Qin Iris Wang and Dale Schuurmans. Improved estimation for unsupervised part-of
-speech tagging. In Natural Language Processing and Knowledge Engineering,

2005. IEEE NLP-KE’05. Proceedings of 2005 IEEE International Conference on,
pages 219-224. IEEE, 2005.

134 Unsupervised Part-of-Speech Tagging

Appendices

Brown Corpus Tagset

1. Sentence closer

2 (Left parenthesis

3) Right parenthesis

4 * not,n’t

5 - Dash

6 N Comma

7 : Colon

8 ABL Pre-qualifier

9 ABN Pre-quantifier

10 ABX Pre-quantifier

11 AP Post-determiner

12 AT Article

13 BE be

14 BED were

15 BEDZ was

16 BEG being

17 BEM am

18 BEN been

19 BER are, art

20 BEZ is

21 CcC Coordinating conjunction

22 CD Cardinal numeral

23 CS Subordinating conjunction

24 DO do

25 DOD did

26 DOZ does

27 DT Singular determiner

28 DTI Singular or plural determiner/quantifier

29 DTS Plural determiner

30 DTX Determiner/double conjunction

31 EX Existential

32 FW Foreign word *

33 HL Word occurring in headline *

34 HV have

35 HVD had (past tense)

36 HVG having

37 HVN had (past participle)

38 HVZ has

39 IN Preposition

40 1 Adjective

41 JIR Comparative adjective

42 JIS Semantically superlative adjective

43 T Morphologically superlative adjective

Alex Brooks & Mike Stees

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

MD
NC
NN
NN$
NNS
NNS$
NP
NP$
NPS
NPS$
NR
NRS
oD
PN
PN$
PP$
PP$$
PPL
PPLS
PPO
PPS
PPSS
QL
QLP
RB
RBR
RBT
RN
RP
TL
TO
UH
VB
VBD
VBG
VBN
VBZ
WDT
WP$
WPO
WPS
WQL
WRB

Modal auxiliary

Cited word 5

Singular or mass noun

Possessive singular noun

Plural noun

Possessive plural noun

Proper noun or part of name phrase
Possessive proper noun

Plural proper noun

Possessive plural proper noun
Adverbial noun

Plural adverbial noun

Ordinal numeral

Nominal pronoun

Possessive nominal pronoun
Possessive personal pronoun
Second (nominal) possessive pronoun
Singular reflexive/intensive personal pronoun
Plural reflexive/intensive personal pronoun
Objective personal pronoun

3rd person singular nominative pronoun
Other nominative personal pronoun
Qualifier

Post-qualifier

Adverb

Comparative adverb

Superlative adverb

Nominal adverb

Adverb/particle

Word occurring in title >

Infinitive marker fo

Interjection, exclamation

Verb, base form

Verb, past tense

Verb, present participle/gerund
Verb, past participle

Verb, 3rd person singular present
wh-determiner

Possessive wh-pronoun

Objective wh-pronoun

Nominative wh-pronoun
wh-qualifier

wh-adverb

135

136

[B R A

Penn Treebank Tagset
cC

CD
DT
EX
FW
IN

1
JIR
N
LS
MD
NN
NNS
NNP
NNPS
PDT
POS
PRP
PP$
RB
RBR
RBS
RP
SYM
TO
UH
VB
VBD
VBG
VBN
VBP
VBZ
WDT
WP
WP$
WRB

Unsupervised Part-of-Speech Tagging

Coordinating conjuction
Cardinal number

Determiner

Existential there

Foreign word
Preposition/subordinating conjunction
Adjective

Adjective, comparative
Adjective, superlative

List item marker

Modal

Noun, singular or mass

Noun, plural

Proper noun, singular

Proper noun, plural
Predeterminer

Possessive ending

Personal pronoun

Possessive pronoun

Adverb

Adverb, comparative

Adverb, superlative

Particle

Symbol (mathematical or scientific)
to

Interjection

Verb, base form

Verb, past tense

Verb, gerund/present participle
Verb, past participle

Verb, non-3rd person singular present
Verb, 3rd person singular present
wh-determiner

wh-pronoun

Possessive wh-pronoun
wh-adverb

Pound sign

Dollar sign

Sentence-final punctuation
Comma

Colon, semi-colon

Left bracket character

Right bracket character
Straight double quote

Left open single quote

Left open double quote

Right close single quote

Right close double quote

Alex Brooks & Mike Stees 137

HMM Introduction

The goal of this Appendix is to introduce the construction and use of HMMSs through a work-
ing example. Note that the example presented does not relate to POS tagging.

Consider a manager of a door-to-door sales company. The manager finds that one of the
employees has not been doing well in sales. The manager wants to develop a model to determine
whether the employee is genuinely struggling to sell products or if the employee is not going door-
to-door during the shift. If the employee is not going door-to-door, the employee will be terminat-
ed. However, if the sales are down even though the employee is going door-to-door, the employee
will not be terminated. To generalize the possibilities, let’s say there are only three things the
employee could be doing during the shift: going door-to-door and successfully selling products,
going door-to-door and not successfully selling products, or not going door-to-door. We will refer
to these possibilities as a set of states, £ = {s¢, 51, 52}, respectively. The manager wants to be able
to determine if the employee is not going door-to-door. However, the manager cannot simply ask
whether or not the employee is going door-to-door, as the employee would probably lie to prevent
termination. Therefore, the only thing the manager can do is attempt to make observations about
the employee’s behavior and appearance to determine if the employee is going door-to-door. Let’s
assume that the employee either looks happy, irritated, or nervous. We will refer to these observa-
tions as, I' = {co, ¢, ¢3}, respectively.

The goal is for the manager to use observations in order to determine what the employee did
during the shift. However, the manager cannot definitively determine what caused the employee’s
appearance. Therefore, the manager must make reasonable assumptions as to what caused the
appearances. The manager can do so by assigning probabilities to the observations, given the ac-
tions of the employee during the work shift. These probabilities are known as emission or observa-
tion probabilities, and will be referred to as the set B ={b;}, where jeT, keX, such
that b;x = P(ck | s;). That is, given the employee did not successfully sell products door-to-door (s,),
the probability that the employee looks happy (cp) is b9 = P(co | 51). Let’s assume the manager
assigns the emission probabilities in Table L

The manager must also consider the likelihood of the employee’s state today, given the state
yesterday. For instance, the manager needs the probability the employee will go out and success-
fully sell products today, given that the employee did not go out yesterday. These variables are
known as transition probabilities and will be referred to as A4 = {a; ;}, where i, j € Z, such
that ai; =P (Sj |Si) . So the probability of the employee going door-to-door and not successfully
selling products (s;) today, given that the employee went door-to-door and successfully sold prod-
ucts (so) yesterday is ag; = P(sy | o). Let’s assume the manager assigns the transition probabilities
in Table I

The final thing that needs to be considered is the initial state. Since this decision does not
involve using information from the previous days, the manager assigns the probabilities for each
state to be equal. We will refer to these initial state probabilities as Il = {m;} , where i€ X, such
that m;=1/3 for i € X. The manager can now use all of this information to define a model, called a
Hidden Markov Model. See Figure 3 for a diagram of the HMM. Further, the manager’s model can
be defined as the five-tuple (%, I, I1, 4, B):

1. Z={s0, S1, $2} Set of States

2. I'={cp, c1, ¢} Set of Observations

3. IM={n;}, whereie X Initial State Probabilities

4. A=A{a;;}, wherei, je X State transition probabilities
5. B={Bi;}, where je L, kel Emission Probabilities

138 Unsupervised Part-of-Speech Tagging

Successful Unsuccessful
Selling Selling Not Going
Happy 0.90 0.05 0.14
Irritated 0.02 0.80 0.08
Nervous 0.08 0.15 0.78
Table 1

Emission Probabilities

Previous Day
Successful Unsuccessful
Selling Selling Not Going
Successful Selling 0.30 0.45 0.25
Unsuccessful Selling 0.50 0.35 0.50
Not Going 0.20 0.20 0.25
Table 2

Transition Probabilities

The manager can now use this model for two purposes [17]:

1. Find out how well the sequence of observations made by the employer match the current HMM.
2. Find the most probable sequence of states that the employee has been in, based on the observa-
tions of the employer.

For purpose 1, the Forward Algorithm is used to calculate the forward probabilities (see
Section 3.2). These are used to determine how well a current HMM matches the manager’s se-
quence of observations. For purpose 2, the Viterbi Algorithm is used to find the most probable
sequence of states (see Section 3.2). This process is the primary focus of unsupervised POS tag-
ging methods. Finally, it is important to note that the Baum-Welch or Forward-Backward Algo-
rithm can be used to generate a good HMM based on observations made by the employer. For
more information on the three tasks and a more in-depth introduction to HMMs refer to [17] and
[21].

0.30 0.50 0.35

co :0.90
cy : 0.02
c2 :0.08

co : 0.05
c¢q 2 0.80
co: 0.15

co:0.14
¢y :0.08
co : 0.78

Figure 3
Diagram representing the example HMM with transition and observation probabilities

