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When matter falls towards a black hole, it will form a disk around the black
hole known as the accretion disk. Accretion disks have been observed to give
rise to relativistic jets coming from the central object. The hypothesis is that
the magnetic field produced by a charged accretion disk directs the outflow
along the rotation axis of the central object, so that, when conditions are suita-
ble, a jet will emerge from each face of the accretion disk. We have constructed
a model of the magnetic field produced by an accretion disk around a black
hole in an active galactic nucleus, and used it to show that particles coming off’
the accretion disk move in the z direction. A computer program was created to
simulate the motion of a particle in the magnetic field. The particle is shown to
leave its circular motion and move in the z direction.

Introduction

Einstein’s theory of general relativity predicted the existence of black
holes. A black hole is a spacetime region of strong gravitational field left after
matter collapses. The strong gravitational field prevents anything from escap-
ing, even light.'! When matter falls towards a black hole, it will form a disk
around the black hole known as the accretion disk.> Gravity causes some mate-
rial from the accretion disk to fall into the black hole. Accretion disks have
been observed to give rise to jets along their polar axes. Why these jets form is
an unsolved problem in physics and one which is of interest to astrophysicists.

To explain the formation of relativistic jets along the axis of rotation of a
black hole, we use two major computations. The first consists of computing the
magnetic field (B-field) generated by the rotating and charged accretion disk
around the black hole. For this computation, we use the Biot-Savart law. The
accretion disk is approximated by a set of single rings. The program computes
the B-field for each ring and sums over all the rings. Once the magnetic field
was computed and verified, we then designed a second program that calculates
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the trajectory of a charged particle under the influence of the Lorentz force.
Starting the particles in different positions along the accretion disk, the pro-
gram allows us to calculate the trajectory upward and inward toward the z-
axis. Both of these programs were written in Fortran language and graphed
with Mathematica.

Magnetic Field

Single Loop
In order to compute the magnetic field generated by the spinning and charged
accretion disk, we first considered the disk as the summation of many single
rings. Such a ring is depicted in Figure 1, in the xy-plane, with radius R, cen-
z tered on the origin. In
this figure point P is an
arbitrary  location at
P C— L P g’.y’z) which we wish to com-
: pute the magnetic field.
p In physics, the Biot-
5 Savart law describes the
magnetic field generat-
ed by an electric cur-
rent.’ The law provides
us with an equation to
Y ¥ calculate the B-field

produced by each ring.
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Figure 1
Current carrying ring of radius R in the xy-plane centered at the
origin
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where x is the vacuum permeability
1 is the electric current in the loop
dl is the infinitesimal element of length of the source
R is the radius of the loop
7 is the vector from source to detector
7=7,—R where 7, is the detector position and R is the source
position
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For the specific case of a ring in the xy-plane, we have:
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The magnetic field in the x direction is determined to be zero as we have cho-
sen field points, 7, in the yz-plane (x=0) and the loop is symmetrical about the
z-axis. We then computed the magnitude of the magnetic field in the yz-plane
in terms of y and z coordinates. Using our computer program, we computed
these integrals given by Biot-Savart by summing the magnetic field over small
portions of the loop (summation over the angle ¢'with an increment of 1.0°).
Figure 2 shows the lines of magnetic force for a single loop, interpolated from
the magnetic field data given by our program. The values for the variables
were chosen for graphical convenience.
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Lines of magnetic field in the yz-plane, for a current carrying loop of radius
R=1.0 and current /= 1.0

Accretion Disk

To obtain the magnetic field for a disk, we simply add the previous results
for a certain amount of rings, each of different radius. In our case, we decided
to have the disk span the distance from rijper = 1.0 t0  royer =2.0 and to use
100 rings (here the summation is over the radius with an increment of 1/100).
Another characteristic specific to the accretion disk is that the current in each
loop is inversely proportional to the square root of the radius because the
speed of a particle in the accretion disk follows a Keplerian motion. The results
are shown in Figure 3.
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Figure 3
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Lines of magnetic field for an accretion disk running from »=1.0 to 2.0 and

I=1/r.

The magnetic field lines are plotted in 2D, but can easily be thought of as a

representation for the 3D image by rotating the Figure 3 around the z-axis.

Mathematical method to compute the Magnetic Field

In order to make sure that our program is correct, we mathematically
computed the B-field for arbitrary points in space. Instead of reasoning on
infinitesimal source of currents like in the Fortran program, we here deal
with integral forms.* We also use cylindrical coordinates: P (p,0,z). Due to
the symmetry of the situation, we set #=0. Before computing the magnetic

field, we first compute the vector magnetic potential® A:
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zzﬂfﬂ ®)

where 7 is the distance between the point source and the detector. From the
geometry of the situation (see Figure 1) we have:

r2=zz+p2+R2—2Rpcos¢' 9)
—sin ¢’
dl = R[ cos ¢' ] d¢' (in Cartesian) ; dl = Rd¢'ey; (in cylindrical)
0

(10)
where R is the radius of the ring, ¢'is the angle from the axis to the source
point, and p is the cylindrical radius to the point P in Figure 1. An expression

for 4 in cylindrical coordinates (p, ¢, z) is obtained, where ¢ is the angular
coordinate of the detector position.

~ mlI [R
A:’;Lﬂ /;[2k“El(k)—Zk“EQ(k)—kEl(k)]eT, (11)

E\(k) and E,(k) are elliptic integrals of the first and the second kind, and are
given by the following equations, where 6 is an arbitrary integration variable:

[ 4Rrp
k: —
22+ (R + p)? (12)

/2 do /2
El(k):fo S — Ez(k)zfo \1-ksin® 0 do

1 —k%sin? 0
(13)a,b

We note that 4 only lies on & which implies that B has a radial and z-
components in cylindrical coordinates. B is obtained from the curl of 4:
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Equation (14) allows us to find an expression of B, and B.. We can use B, to
find expressions for B, and B,

B, =B,cos¢ (15)
B, =B,sin¢ (16)
Therefore
B
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2np\2+R+pP V2 +{K=p) (17)
. 2.5 25 2
B, = it (Ii o Ez(k)—El(k)) sin ¢
271'/) VZZ+(R+p)2 = +( _p) (18)
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Since these equations characterize the B-field only for a single loop, our verifi-
cation only deals with an accretion disk as the sum of two single rings. We then
compute (B,, B,, B.) for each of the two rings using equations 17, 18, and 19
and then take the sum to get the total B-field produced by the accretion disk.
Finally, we compute the B-field using our Fortran program and compare the
results with the curl of A outlined above. We checked four random points at
different (x,y,z) and in the worst case, the B-field from the handwritten formula
matches the Fortran program within five parts per million.

Particle Trajectory
The final model consists of a particle rotating just above the accretion disk and

then, under the influence of the magnetic field, rising up and in towards the
z-axis. The particle starts in the (y, z) plane at a small z = (.2 and at y = y, with
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an initial velocity directed in the x-direction ¥ = v 7. We start the particle at a
small z=0.2 because the magnetic field diverges at z =0.

In physics, the force on a particle due to electromagnetic fields is given by
the Lorentz equation:

. dp ~
F=—/—=¢q(VxXB 20
~, =4a(vxB) (20)
Av, /At q Vy B 4 vy B, -v; B,
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If we consider At sufficiently small so that the velocity remains approximately
constant over that amount of time, we can find the change in velocity:

Avy =4 (v, B, - v, B)) At

m
Avy, = i (v, By — vy B,) At (22)
Av, =1 (v, B, —v, B,) At

m

For each step At, the program reads the position and the velocity of the previ-

ous step (the initial conditions). It then computes the magnetic field at this

point in order to obtain, from which we get v/ =v +Av and finally the new vec-

tor position: R, = R; +v A¢. This operation is repeated over 100 steps, thus ob-

taining the trajectory of the particle. This program was run five times, each

particle starting at a different positions on the y-axis. The conditions used:
yo=1.1;12; 1.3; 1.4; 1.5

Z()=0.2
vo=108m/s
g/m=176x10" C/kg

Ar=5%x10""0g
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Figure 4

Three-dimensional image of the particle trajectory, due to the magnetic field
of the accretion disk. In this case, the black hole, represented by its event
horizon here (the limit of no return for any particle) is a Kerr Black Hole,
which means it is spinning but it is not charged.
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Figure 4 is the three-dimensional image of the particles trajectory. This fig-
ure illustrates the accretion disk with inner radius being the inside ring, R=1
and outer radius being the outside ring, R=2. Also illustrated is the black
hole, centered at the origin and the rotation axis of the black hole, in the z-
direction. Our three-dimensional image plotted in Mathematica shows how
the particles move due to the magnetic field produced by the accretion disk.
To better visualize the trajectory of the particles, Figures 5 and 6 show the
two-dimensional motion in the yz-plane and xz-plane respectively.

Formation of relativistic jets

As we can see from Figures 4 through 6, the particles leave the accretion
disk and move in an upward/downward direction, along the axis of rotation
of the black hole. The particles tend to move on a straight line when they get
far enough away from the accretion disk, some passing through the z-axis.
So how do the particles stay near the z-axis? As we get close to the black
hole, space and time are twisted due to the angular momentum of the black
hole and of the accretion disk. According to the current model established by
Roger Blandford®, the magnetic field lines also are twisted around the z-axis,
resulting in an accumulation of the particles near the axis of rotation of the
black hole, which could explain why the relativistic jets are long and narrow.
Therefore, we have constructed a model which demonstrates that particles
can be accelerated vertically away from the accretion disk and inward to-
ward the z-axis. Together with the frame-dragging effects of general relativi-
ty, this results in a relativistic jet.
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